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Abstract

In this paper, the prediction of averaged energy of damped structural-acoustic systems is investigated. A simplified energy

finite element method, referred to as EFEM0, is developed based on the energy flow analysis (EFA) equations and

implemented using the finite volume method. The resulting formulations can be incorporated into statistical energy analysis

(SEA) software and extends SEA application to moderately damped systems with strong coupling. The formulations are

verified against analytical solutions for a single beam and coupled beams with both strong and weak coupling. A hybrid

technique consisting of the EFEM0 approximation superimposed on a direct field is used to model moderately damped plates.

For lightly damped systems, both methods produce acceptable results. For moderately damped two-dimensional systems, the

EFEM0 method augmented with the direct field component produces significantly improved results.

r 2008 Published by Elsevier Ltd.

1. Introduction

The prediction of averaged energy of structural-acoustic system is often sufficient for the purpose of design,
particularly for broadband excitation or when frequency-averaged results are desired. This type of prediction
is common, particularly using statistical energy analysis (SEA). SEA theories were developed assuming light
damping and weak coupling. For such systems, the subsystems are reverberant and the energy density within
the subsystems can be assumed to be uniform. The coupling of subsystems will not depend on the relative
location or orientation of the subsystems, only that they are connected.

On the other hand, the energy response of systems with heavy damping tends to be dominated by response
directly from the source. Since the energy is dissipated throughout the subsystems, the energy scattered at the
boundaries is minimal and does not create a significant ‘‘reverberant’’ or diffuse field. For heavily damped
systems, direct field theories will model response well except near the boundaries.

For systems where damping is moderate, the energy density within the system is higher near the source due
to the direct field but becomes more uniform away from the source as reflections from the boundaries become
more significant. In such cases the energy within subsystems is spatially varying. In addition, the energy
transmitted through the joint between two subsystems is dependent on the energy incident on the joint, which
ee front matter r 2008 Published by Elsevier Ltd.
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is determined by the relative location of the joint to the source(s). In a built-up system where energy is
transmitted through multiple moderately damped subsystems, the effect of spatial location can accumulate to
significantly affect the predicted energy in the remote subsystems. Average energy models that make many of
the same assumptions as SEA but account for the effects of moderate damping are available and are
sometimes referred to as energy flow analysis (EFA). In addition to modeling moderate damping, these
theories are also capable of modeling the behavior of strong coupling. The methods and predictions based on
the different theories will be compared for simple systems with different levels of damping.

2. Energy flow analysis theory

To obtain an accurate and simple mathematical model representing the energy propagation in structural-
acoustic systems, significant efforts have been made to develop equations that govern the energy flow in
continuous structures. Belov and Rybak first derived the transport equations utilizing the Green’s function for
infinite vibrating plates [1], and formulated the conduction equations for the energy flow in ribbed plates [2].
Nefske and Sung [3] developed the equation that governs the energy flow in homogeneous finite beams and
solved the equation in terms of energy variables. Wohlever and Bernhard [4] derived the energy governing
equations using a method that is consistent with classical mechanics, and obtained a second-order differential
equation which governs the smoothed energy distribution in rods and beams. The coupling of subsystems in
terms of energy density was developed by Cho [5]. Using these governing differential equations and coupling
relations to solve the energy variables analytically is referred to here as EFA. By this approach, energy
conduction in structural-acoustic systems is simple to predict and can be implemented using numerical
methods with relatively few degrees of freedom. The technique predicts the spatial distribution of the
energetics of built-up structures if the energy density is spatially varying.

SEA was initiated by Lyon andMaidanik [6]. The basic premise of SEA is to represent the state of vibration by
stored, dissipated, and transferred energies. For SEA approximations, the lumped physical dynamical char-
acteristics of the subsystems are used to describe the system. This feature makes SEA a simple, straightforward
method with inexpensive computational cost. SEA has been extended from the original theories and has been
successfully used for numerous cases. However, application is limited by the underlying assumptions of SEA
theory. For example, SEA assumes energy is evenly distributed within a subsystem. This assumption limits
application of SEA to lightly damped systems where the energy incident on a joint is not dependent on the
location of the joint relative to the source(s). Guyader et al. [7] have shown that SEA overestimates the energy
transmission between two coupled plates in an L-shape. SEA application is also limited by the assumption of light
coupling which prohibits dividing a natural subsystem, such as an acoustical enclosure, into multiple elements.

In the following subsections, the principles of EFA will be summarized and a simple numerical
implementation of the EFA equations will be developed and compared to SEA. This numerical formulation,
referred to as EFEM0 (the superscript ‘‘0’’ denoting that a zero-order interpolation or the finite volume
method is applied [8]), is a moderate extension of SEA and is possible to implement using SEA software.
Predictions using the various methods will be compared for point excited, one-dimensional (1-D) and damped
two-dimensional (2-D)systems where concern has been expressed about EFA-based methods [9].

2.1. The EFA system model

For steady-state vibrational energy propagation within a control volume V, the principle of conservation of
energy requires that the total power Pin entering the control volume must be balanced by the summation of
the power dissipated in the volume, Pdiss, and the energy flow through the boundary S:

Pdissþ ¼ Pin, (1)

where I
!

is the intensity of the field. For a general case, assuming the intensity function has continuous first
partial derivatives, the divergence theorem can be applied such thatZ

S

I
!
� n!dA ¼

Z
V

r � I
!

dV . (2)
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Writing each term in Eq. (1) in the format of volume integralsZ
V

pdiss dV þ

Z
V

r � I
!

dV ¼

Z
V

pin dV , (3)

the energy balance equation is obtained for steady-state vibrational energy propagation such that

r � I
!
þ pdiss ¼ pin, (4)

where pin is the input power density (power input per unit volume), pdiss is the dissipated power density
(power dissipated per unit volume). For EFA implementations a simple loss factor model of damping is used
for power dissipation

pdiss ¼ Zoe, (5)

where Z is the damping loss factor, o is the angular frequency, and e is the time-averaged and locally space-
averaged energy density.

As derived by Bouthier and Bernhard [10], the relationship between energy density and intensity for a point-
excited infinite plate is

r � ~I ¼
1

r

d

dr
ðrcgeÞ. (6)

Using Eqs. (4)–(6), the governing differential equation for energy density distribution in the far field of a
infinite point-excited plate is [10]

1

r

d

dr
ðrcgedÞ þ Zoe ¼ pin. (7)

The solution for the direct-field energy density due to a point source in a two-dimensional system is

ed ¼
Pin

2phrcg

expð�Zor=cgÞ (8)

and the radial intensity is

I rad ¼ cgedðRÞ ¼
Pin

2phr
expð�Zor=cgÞ. (9)

A similar equation can be derived for three-dimensional (3-D) homogeneous systems using Bouthier and
Bernhard [10] but will not be derived or used in this paper.

For certain cases, such as in a reverberant field, where the response can be assumed to be the superposition

of moderately damped plane waves, Bouthier and Bernhard [10] showed that the smoothed intensity I
!

is
related to the energy density by

I
!
¼ �

c2g

Zo

 !
re, (10)

where e is the time-averaged and locally space-averaged energy density, re is the gradient of the
smoothed energy density, and cg is the group speed. Using Eqs. (4), (5) and (10), the general form
of the differential equation governing the energy density in an isotropic, homogenous system can be
written as

c2g

oZ

 !
r2e� oZeþ pin ¼ 0. (11)

2.2. EFA joint model

For structural problems, discontinuity of physical properties causes the energy density to be discontinuous
at joints. However, as described by Cho [5], using smoothing approximations that are consistent with EFA
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Fig. 1. Two co-linear beam elements coupled with a joint.
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equations, a relationship between energy flow and energy density at the joint can be found. To illustrate the
derivation of this relationship for a simple example of two coupled systems, consider the case of two
coupled collinear beams as shown in Fig. 1. The energy density and energy flow at joints with dis-
continuities can be expressed in terms of components associated with positive (+) and negative (�) traveling
waves:

ei ¼ eþi þ e�i (12)

and

qi ¼ qþi � q�i ¼ cgie
þ
i Ai � cgie

�
i Ai ði ¼ 1; 2Þ. (13)

where A is the cross-sectional area, and cg is the group speed. At the joint position, ei (i ¼ 1, 2) are the nodal
values of energy density on either side of the joint and qi (i ¼ 1, 2) are the net energy flow through the joint out
of beam i.

For the coupled collinear systems as shown in Fig. 1, the net energy flow away from the joint in each beam
can be expressed as

q�2 ¼ t12qþ1 þ r22qþ2 , (14)

q�1 ¼ t21qþ2 þ r11qþ1 , (15)

where tij is the power transmission coefficient from beam i to beam j (i, j ¼ 1, 2), and rii is the power reflection
coefficient in beam i.

Substituting Eq. (12) and (13) into Eqs. (14) and (15) gives

cg2e
�
2 A2 ¼ t12cg1eþ1 A1 þ r22cg2e

þ
2 A2, (16)

cg1e
�
1 A1 ¼ t21cg2eþ2 A2 þ r11cg1e

þ
1 A1. (17)

The relationship between net energy flow and energy density are obtained by solving Eqs. (12)–(17).
Substituting the values of e�i into Eq. (13) yields the expression of energy flow through the joint from beam 1,
which is also the energy flow from beam 1 to 2:

q1!2 ¼ q1 ¼
1

r11 þ r22
½ t12cg1A1 �t21cg2A2 �

e1

e2

( )
. (18)

The energy flow from beam 2 to beam 1 is q2-1 ¼ q2 ¼ �q1. This same type of joint relationship can be
developed in terms of reflection and transmission coefficients for multiple connected joints and distributed
joints [11].

The derivation of q1 and q2 does not require the joint to be conservative. Thus, it is possible to model
a dissipative joint using Eqs. (16) and (17) and EFA methods. For conservative coupling for rods and
beams, t12 ¼ t21, r11 ¼ r22 and t+r ¼ 1. In this paper, the joints are assumed to be conservative. For
conservative coupling, the relationship between the energy and energy flow at a joint from Eq. (18) can be
reduced to

q1

q2

( )
¼

1

2� t12 � t21

t12cg1A1 �t21cg2A2

�t12cg1A1 t21cg2A2

" #
e1

e2

( )
. (19)
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3. Simplified energy finite element method (EFEM0) model

3.1. EFEM0 model

In this section, an EFEM0 formulation will be derived using the finite volume method. The result of the
formulation will be a matrix equation much like the SEA matrix equation. The illustration will be developed
for a 1-D form of Eq. (11). However, the method can be applied similarly for 2-D and 3-D problems.

The 1-D form of the EFA Eq. (11) can be written as

d

dx

c2g

Zo
de

dx

 !
� Zoeþ pin ¼ 0. (20)

For the finite volume method [12], the problem domain is discretized into a number of control volumes and
the center of each control volume is treated as a node. For convenience, we use a capital letter (P, W, or E) to
represent both a volume and its center (node), as shown in Fig. 2. The lower case letters ‘‘w’’ and ‘‘e’’ denote
the ‘‘west’’ and ‘‘east’’ boundaries of volume (or element) P. The spacing between the nodes is DxWP and
DxPE. The length of element I (I is any of P, W or E) is identified by LI.

Integration of the 1-D EFA governing equation over the control volume P yieldsZ
V

d

dx

c2g

Zo
de

dx

 !
dV �

Z
V

ðZoeÞdV þ

Z
V

pin dV

¼
c2gA

Zo

 !
de

dx

�����
e

�
c2gA

Zo

 !
de

dx

�����
w

� ZoeV þ pinV ¼ 0, (21)

where dV ¼ A dx and A is the cross-sectional area of the 1-D system. The volume of P is V ¼ ALP. Eq. (21) is
an energy balance equation, which states that the sum of the energy leaving the control volume and the energy
dissipated in the domain per unit time is equal to the power input.

The energy flow terms in Eq. (21) can be rewritten as

c2gA

Zo

 !
de

dx

����
e

¼
c2gA

Zo

 !
eE � eP

DxPE

;
c2gA

Zo

 !
de

dx

�����
w

¼
c2gA

Zo

 !
eP � eW

DxWP

. (22)

Substitution of Eq. (22) into Eq. (21) yields

c2gA

Zo

 !
eE � eP

DxPE

�
c2gA

Zo

 !
eP � eW

DxWP

� oZePALP þ pinALP ¼ 0, (23)

which can be rearranged as

ZoALP þ
c2gA

ZoDxPE

þ
c2gA

ZoDxWP

 !
eP �

c2gA

ZoDxWP

eW �
c2gA

ZoDxPE

eE ¼ pinALP. (24)

An equation of this form can be developed for each nodal point. The resulting system of linear algebraic
equations can be solved to obtain the energy density values at each node. Thus, an approximate spatial
distribution of energy density can be obtained for continuous systems. As demonstrated here, one of the major
LPLW

�xWP

x

LE

�xPE

wW EP e

Fig. 2. One-dimensional finite volume grids.
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advantages of the finite volume method is that the numerical algorithm is closely related to the underlying
physical conservation principle. This feature makes the method easy to apply and to adapt to novel problems.
3.2. Coupling loss factors for strong coupling

To illustrate the relationship of the EFEM0 to SEA, the energy flow terms in Eq. (23) can also be restated in
terms of ‘‘coupling’’ coefficients (Zc

e) and energy conservation. Eq. (23) can be rewritten as

o½ðZc
ePEEP � Zc

eEPEEÞ þ ðZc
ePW EP � Zc

eWPEW Þ� þ oZEP ¼ PP;in, (25)

where EI ¼ ALIeI, and

Zc
eIJ ¼

c2g

Zo
A

DxIJ

1

oV I

¼
2c2g

Zo2LI ðLI þ LJ Þ
, (26)

where I and J denote the central node numbers of adjacent control volumes (such as E, W, P) and the finite
difference approximation DxIJ ¼ (LI+LJ)/2 is used. Eq. (25) is similar to an SEA equation, which has the
general form

Xm

j¼1;ai

oðZijEi � ZjiEjÞ þ oZiEi ¼ Pi;in. (27)

For a coupled three-element beam model as shown in Fig. 3, there are two types of couplings: one for the
continuous system represented by the connection of elements 1 and 2; the other for the discontinuous system
(joint) between elements 2 and 3. According to the coupling relations for the discontinuous systems shown in
Eq. (18), an approximation of the energy flow from system 2 to 3 can be obtained

q23 ¼
1

r22 þ r33
½ t23cg2A2 �t32cg3A3 �

e2

e3

( )
. (28)

For the continuous system, an estimate of the energy flow at the interelement boundaries can be written as

q21 ¼
c2g2A2

Z2o
e2 � e1

Dx12
. (29)

Substitution of Eqs. (28) and (29) into the energy balance equation for element 2, q21+q23+Pdiss ¼ Pin 2,
yields

�
c2g1

Z1oL1Dx12
A1L1e1 þ oZ2 þ

c2g2

Z2oL2Dx12
þ

cg2

L2

t23
r22 þ r33

 !
A2L2e2 �

cg3

L3

t32
r22 þ r33

A3L3e3 ¼ Pin 2. (30)

Note that A1 ¼ A2 in the three-beam case shown in Fig. 3. The corresponding equations for elements 1
and 3 are

oZ1 þ
c2g1

Z1oL1Dx12

 !
A1L1e1 �

c2g2

Z2oL2Dx12
A2L2e2 ¼ Pin1 (31)
L2L1

�x12

x

L3

1 32

Fig. 3. Coupled three-element beam model with continuous and discontinuous joints.
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and

�
cg2

L2

t23
r22 þ r33

A2L2e2 þ oZ3 þ
cg3

L3

t32
r22 þ r33

� �
A3L3e3 ¼ Pin3. (32)

The three equations can be assembled into a matrix equation to model the energy flow in the three-element
system. In order to write the matrix equation in more concise form and to be able to compare the resulting
matrices to SEA matrices, the total energy in the element, Ei ¼ AiLiei, will be used, and two coupling factors
will be defined:

Zc
eij ¼

2c2g

Zo2LiðLi þ LjÞ
, (33)

to model the connection between the continuous systems, and

Zdc
eij ¼

cgi

oLi

tij

rii þ rjj

�
cgi

oLi

tij

2� tij � tji

, (34)

to model a conservative joint at the discontinuity. The EFEM0 equations for the three-element system shown
in Fig. 3 can be written in matrix form as

ðZ1 þ Zc
e12Þo �Zc

e21o 0

�Zc
e12o ðZ2 þ Zc

e21 þ Zdc
e23Þo �Zdc

e32o

0 �Zdc
e23o ðZ3 þ Zdc

e32Þo

2
64

3
75

E1

E2

E3

8><
>:

9>=
>; ¼

Pin1

Pin2

Pin3

8><
>:

9>=
>;. (35)

Eq. (35), which has been derived using a finite volume implementation of an EFA equation, has the same
structure as the SEA matrix equation, which was derived for lightly damped, weakly coupled modal systems
with high modal overlap. Many of the terms are the same, particularly those associated with power input and
dissipation of energy within the element. However, two extensions of SEA are derived using the EFEM0

approach.
Typical SEA coupling loss factors for connected systems (the discontinuous case) are either [13]

Z12 ¼
cg1

oL1

t12
2� t12

, (36)

or

Z12 ¼
cg1

oL1

t12
2

. (37)

Eq. (34) has been derived for a general problem including strong coupling and significant energy flow from
either side of the joint. The denominator of Eq. (34) contains additional terms relative to Eqs. (36) and (37).
All three expressions are similar for weak coupling when the transmission coefficients are close to zero but
differ when the transmission coefficient is significant. The additional terms in the denominator of Eq. (34)
account for the effects of strong coupling and significant energy flow from either side of the joint.

The formulation of the apparent ‘‘coupling loss factor’’ for continuous, damped subsystems in Eq. (33) is
novel. No similar factor has been derived for SEA. This formulation allows the division of continuous
subsystems into elements. This is particularly helpful for systems with significant damping where the decay of
energy within the system must be modeled.
4. EFA and modal solutions for one- and two-dimensional systems

EFA and EFEM0 solutions will be compared to analytical solutions for simple 1-D and 2-D systems.
A hybrid EFA and EFEM0 method will also be utilized to model the response of damped point-driven plates.
The solutions for each of the approaches are derived in this section.
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4.1. EFA solution for one-dimensional beams

The general solution of the 1-D EFA governing equation for the far field, space-averaged energy density in a
beam can be expressed as

e ¼ C1 expðaxÞ þ C2 expð�axÞ, (38)

where a ¼ Zo/cg, and the constants C1 and C2 are determined from the boundary conditions. For a clamped
beam excited by a harmonic point force as shown in Fig. 4, the energy flow at the right end (x ¼ 0) is zero

Iðx ¼ 0Þ ¼ �
c2g

Zo
de

dx

����
x¼0

¼ �
c2g

Zo
ðaC1 � aC2Þ ¼ 0. (39)

Thus, C1 ¼ C2 ¼ C (constant), and

e ¼ 2C coshðaxÞ. (40)

The energy flow at the left end (x ¼ �L) is

Iðx ¼ �LÞ ¼ �
c2g

Zo
de

dx

����
x¼�L

¼
Pin

A
, (41)

where Pin is the power input and A is the cross-sectional area. Substitution of the solution (Eq. (38)) into the
boundary condition (Eq. (41)) yields

C ¼
Pin

2ZoA

a
sinhðaLÞ

. (42)

Thus, the EFA solution for the 1-D beam is

eEFAðxÞ ¼
Pin

ZoA

a coshðaxÞ

sinhðaLÞ
. (43)

4.2. EFA plane wave solution for rectangular plate

The EFA equation for a point-excited rectangular plate assuming damped plane wave behavior [10] is

�
c2g

Zo
q2e

qx2
þ

q2e
qy2

� �
þ Zoe ¼ Pindðx� x0Þdðy� y0Þ. (44)

The solution of this equation can be expanded as a sum of the cosine functions

e ¼
X1
m¼0

X1
n¼0

Amn cosðmpx=aÞ cosðnpy=bÞ. (45)

Substituting Eq. (45) into Eq. (44) yields

X1
m¼0

X1
n¼0

ðc2g=ZoÞ½ðmp=aÞ2 þ ðnp=bÞ2� þ Zo
n o

Amn cosðmpx=aÞ cosðnpy=bÞ

¼ Pindðx� x0Þdðy� y0Þ. (46)
Πin

x

x = 0
L

x = -L

Fig. 4. Free-clamped beam with power input at the free end.
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Using Fourier series methods, the EFA energy density solution assuming damped plane waves for a
rectangular plate excited at point (x0, y0) can be expressed as

e ¼
X1
m¼0

X1
n¼0

Pin cosðmpx0=aÞ cosðnpy0=bÞ

Cmnfðc2g=ZoÞ½ðmp=aÞ2 þ ðnp=bÞ2� þ Zog
cosðmpx=aÞ cosðnpy=bÞ, (47)

where the coefficient Cmn is

Cmn ¼

ab=4 for ma0 and na0;

ab=2 for m ¼ 0; na0 or n ¼ 0; ma0;

ab for m ¼ 0 and n ¼ 0:

8><
>: (48)
4.3. Modal solution for a rectangular plate

The equation of motion for the transverse displacement of an isotropic plate is

D
q4w

qx4
þ 2

q4w

qx2 qy2
þ

q4w
qy4

� �
þ rh

q2w

qt2
¼ 0. (49)

The bending stiffness D is

D ¼
Eh3

12ð1� m2Þ
, (50)

where E is Young’s modulus, m is Poisson’s ratio, and h is the thickness of the plate.
For a simply supported rectangular plate, the displacements and the moments at the boundaries are zero

wð0; y; tÞ ¼ wða; y; tÞ ¼ wðx; 0; tÞ ¼ wðx; b; tÞ ¼ 0, (51)

Mxð0; y; tÞ ¼Mxða; y; tÞ ¼ 0, (52)

Myðx; 0; tÞ ¼Myðx; b; tÞ ¼ 0. (53)

The forced response can be expressed as a modal superposition of the form

wðx; y; tÞ ¼
X1
m¼1

X1
n¼1

Amn sinðmpx=aÞ sinðnpy=bÞ expðjotÞ, (54)

where Amn is an amplitude coefficient determined from the excitation of the problem. For a simply supported
plate excited by a point force F0 at the center, the coefficient Amn is evaluated as

Amn ¼
4F0

rhab

sinðmp=2Þ sinðnp=2Þ
ð1þ jZÞo2

mn � o2
, (55)

where the natural frequencies for an isotropic plate [14] are

omn ¼ p2ðD=rhÞ1=2½ðm=aÞ2 þ ðn=bÞ2�. (56)

The time-averaged energy density for an isotropic plate can be expressed as

e ¼
1

4
D

q2w
qx2

q2w�

qx2
þ

q2w

qy2

q2w�

qy2
þ 2m

q2w

qx2

q2w�

qy2
þ 2ð1� mÞ

q2w
qx qy

q2w�

qx qy

� �

þ
1

4
rh

qw

qt

qw�

qt

� �
, (57)

where the superscript * designates for the complex conjugate. The modal solution is substituted into Eq. (57)
to calculate energy density.
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The frequency-averaged energy density was calculated using a sum of the energy density at N frequencies

ē �
1

Df

XN

n¼1

edf , (58)

where N is

N ¼
f u � f l

df
þ 1, (59)

where df is the frequency increment, which could be chosen to be less than one-half the average separation of
resonant frequencies df [5]. The average frequency spacing between resonances in a 2-D system is [13]

df
2D
¼

1

2pnðf Þ
¼

c2g

4pfab
, (60)

where n(f) is the modal density.

4.4. Hybrid method

The EFA plane wave equation was derived using a damped plane wave assumption, and thus, represents well
the energy distribution in a damped reverberant field. Where the direct field of a source is dominant, wave
propagation is primarily in terms of cylindrical waves for 2-D systems, or spherical waves for 3-D systems. The
EFA equation based on superimposed damped plane waves is not a good model of the response of such systems.

A hybrid energy modeling method was developed by Smith [15] to address this problem. The general
technique is to separate the contributions of the direct field and the reverberant field and predict responses of
these two fields independently. The direct field is calculated assuming the plate is infinitely large. The power
entering the reverberant field is assumed to be the power from the direct field reflected at the boundary of the
finite system. The overall response is the superposition of the two fields.

For numerical implementation using the EFEM0 formulation, the problem domain is discretized into finite
volumes. The power input to the EFEM0 is modeled as the intensity at the boundary due to the direct field,
which is assumed to be reflected into the reverberant field at the boundary or transmitted into connected
systems. The direct field energy density for each volume is calculated from the energy density at the location of
the center node of the finite volume relative to the source. The total response for each control volume can be
obtained by superposition of the two solutions.

As a simple example of this implementation, a plate shown in Fig. 5 is considered. For S on the boundary
surface of a region T in space, ~n is the outer unit normal vector of S. The direct field power flow from a point
source to a small surface area DA is equal to ~I �~nDA, where ~I �~n is the normal component of ~I in the direction
of ~n. For the EFEM0 numerical implementation, the magnitude of the intensity at a point (j) due to the direct
field is

I
ðjÞ
d ¼ cge

ðjÞ
d ¼

Pin

2phrðjÞ
expð�ZorðjÞ=cgÞ, (61)

where r(j) is the distance from the excitation point (x0, y0) to the center of the element (x(j), y(j)), and is
calculated by

rðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðjÞ � x0Þ

2
þ ðyðjÞ � y0Þ

2
q

. (62)

r(j) can also be expressed as

rðjÞ ¼ d= cos y, (63)

where d is the normal distance from the excitation point to the boundary, and y is the angle between a radial
vector from the source and the normal vector of the boundary as shown in Fig. 5.

The normal component of the direct field intensity in the direction perpendicular to the boundary is
I
ðjÞ
d cos y. Then the resulting power incident on the boundary is I

ðjÞ
d cos yDAðjÞ, where DA(j) is the boundary
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Fig. 5. One element on the plate boundary.
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elemental area, DA(j)
¼ hL(j). Assuming r11(y) is the reflection coefficient at the location, the power reflected

into the element (j) of the reverberant field along the boundary is

PðjÞv

��
G ¼ r11ðyÞI

ðjÞ
d cos yDAðjÞ. (64)

Substitution of Eqs. (61)–(63) into Eq. (64) gives

PðjÞv ðyÞ
��
G ¼ r11ðyÞDðyÞb

ðjÞPin, (65)

where D(y) is a directivity function expressed as

DðyÞ ¼ cos2 y expð�Zod=cg cos yÞ (66)

and b(j) is defined as

bðjÞ ¼ LðjÞ=2pd. (67)

The elemental reverberant power is a function of angle y and can be incorporated into the input power
vector of the global matrix of the EFEM0 model.

5. Applications and results

In this section, the results for SEA, EFEM0, and hybrid approaches will be compared to analytical
predictions for moderately damped beams and plates to illustrate the applicability and limits of each of the
methods. In each case the SEA model was developed using a single degree of freedom for each subsystem and
the result will be plotted as uniform energy density over the entire subsystem.

5.1. EFEM0 convergence study

In order to do a convergence study, a single uniform damped beam with simply supported boundary
conditions is studied using EFEM0 theory. The beam is excited using a transverse harmonic force at the center
location. The length of the beam is 4m and the damping loss factor is 0.24. Since EFEM0 allows the
discretization of each subsystem to improve the accuracy of the prediction, the beam is divided into a number
of elements. An analytical EFA solution is also obtained for validation. The EFEM0 predictions of energy
density at one point (1m away from the end) of the beam are shown in Fig. 6. The accuracy of EFEM0

prediction increases as more elements are used, and converges to the EFA analytical solution, which
represents the locally space-averaged value of the responses well.
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F0e jωt

Beam 1 Beam 2

Fig. 7. Two coupled beams with simply supported boundary conditions.
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5.2. Coupled beams

The coupled beams shown in Fig. 7 with simply supported boundary conditions were also studied. The
physical properties are listed in Table 1. Analytical solutions were obtained using a wave solution for
Euler–Bernoulli beam theory. The predictions using the three coupling loss factor relationships (Eqs. (34), (36)
and (37)) are compared for three cases: strong coupling (t12 ¼ 0.9994), medium coupling (t12 ¼ 0.6289) and
weak coupling (t12 ¼ 0.2356). As shown in Figs. 8–10(a), the predictions using the new Zdc

eij expressed in
Eq. (34) for discontinuous joint match the analytical solutions for all three cases. For weak coupling case
predictions as shown in Fig. 10, the difference between the predictions using the three equations is slight.
However, for the strong coupling case shown in Fig. 8, the predictions using Eqs. (36) and (37) overestimate
the energy density jump at the joint. This investigation shows that the coupling loss factor formulation
expressed in Eq. (34) is suitable for both strong and weak coupling cases and is an improvement relative to
SEA formulations for strong coupling cases.

5.3. Rectangular plates

The three numerical methods, SEA, EFEM0 and the hybrid-EFEM0 method, were compared to the
analytical solution for the prediction of energy density for a point-driven plate with the properties listed in
Tables 2 and 3. This is a relatively demanding case and is not necessarily typical of applications where
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Table 1

Physical parameters of the two beams

Beam 1 Beam 2

Case I Case II Case III

Cross-sectional area (m2) A1 ¼ 4� 10�4 A2 ¼ 1.2A1 A2 ¼ 6A1 A2 ¼ 16A1

Area moment of inertia (m4) I1 ¼ 1.33� 10�8 I2 ¼ 1.44I1 I2 ¼ 36I1 I2 ¼ 256I1
Young’s modulus (Pa) E1 ¼ 7.1� 1010 E2 ¼ E1 E2 ¼ E1 E2 ¼ E1

Density (kg/m3) r1 ¼ 2.7� 103 r2 ¼ r1 r2 ¼ r1 r2 ¼ r1
Loss factor Z1 ¼ 0.25 Z2 ¼ Z1 Z2 ¼ Z1 Z2 ¼ Z1
Length (m) L1 ¼ 2 L2 ¼ L1 L2 ¼ L1 L2 ¼ L1
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Fig. 8. Comparison of EFEM0 prediction using different coupling loss factor equations for two strongly coupled beams at 3150Hz (Case

I: t12 ¼ 0.9994): (y) analytical wave solution; (- � - � -) EFA analytical solution; (—) EFEM0 prediction using: (a) Eq. (34), (b) Eq. (36),

and (c) Eq. (37).
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Fig. 9. Comparison of EFEM0 prediction using different coupling loss factor equations for two coupled beams at 3150Hz (Case II:

t12 ¼ 0.6289): (y) analytical wave solution; (- � - � -) EFA analytical solution; (—) EFEM0 prediction using: (a) Eq. (34), (b) Eq. (36) and

(c) Eq. (37).
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subsystems are not directly excited (e.g., act only as conductors of energy) or cases where the source loading is
distributed. However, this case is useful to illustrate the differences between the methods, which occur
particularly where there is significant damping and localized excitation.

The predictions of the hybrid-EFEM0 method for plates with simply supported boundaries are shown in
Figs. 12–15, compared with the frequency-averaged modal solutions for the plate. The equivalent radius of a

rectangular plate was calculated by R ¼
ffiffiffiffiffiffiffiffiffiffi
ab=p

p
, where a and b are the edge length of the corresponding

rectangular plate. The variation of the parameter ZoR/cg is obtained by adjusting the damping loss factor as
shown in Table 3. The results are plotted for the prediction along the x0 axis from point O0 to P0 in Fig. 11,
where O0 is the center of the plate, P0 is the intersection point of the boundaries of the square plate and the

equivalent circular plate, and the distance O0P0
�� �� ¼ R.
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Fig. 10. Comparison of EFEM0 prediction using different coupling loss factor equations for two weakly coupled beams at 3150Hz (Case

III: t12 ¼ 0.2356): (y) analytical wave solution; (- � - � -) EFA analytical solution; —, EFEM0 prediction using: (a) Eq. (34), (b) Eq. (36)

and (c) Eq. (37).

Table 2

Physical properties of the isotropic square plates

Properties

Young’s modulus (Pa) 2� 108

Poisson’s ratio 0.5

Density (kg/m3) 1100

Thickness (m) 0.01

Frequency (Hz) 1000

Edge length (m) 1.5

Equivalent radius of circular plate (m) 0.846

S. Wang, R.J. Bernhard / Journal of Sound and Vibration 319 (2009) 426–444440
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Table 3

Loss factor and aR values for case studies

Loss factor Parameter aR ¼ ZoR/cg

Case 1 0.001 0.03

Case 2 0.01 0.3

Case 3 0.04 1.1

Case 4 0.25 7.0

a

b

x

y

x′

O

O′R

P′
y′

Fig. 11. The square plate and the equivalent circular plate.
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Fig. 12. Energy density predictions for square plate (Case 1: aR ¼ 0.03): (- � - � -) modal solution (frequency-averaged); (—) EFA plane

wave solution; (- - - -, SEA prediction; (			) hybrid-EFEM0 prediction.
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The point source in the plate creates a direct field. For lightly damped cases, the direct field will be dominant
in only a small region near the source. For moderately damped systems, the direct field becomes more
significant. For heavily damped systems, the direct field dominates the response. All three numerical methods
are based on principles of energy conservation. Thus, the total power dissipated will be equal to the power
input. Since SEA and EFEM0 under predict energy flow in the direct field, and thus under predict the energy
density in the direct field, the methods over predict the energy density in the reverberant field. The EFEM0
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Fig. 13. Energy density predictions for square plate (Case 2: aR ¼ 0.3): (- � - � ), modal solution (frequency-averaged); (—) EFA plane

wave solution; (- - - -) SEA prediction; and (			) hybrid-EFEM0 prediction.
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Fig. 14. Energy density predictions for square plate (Case 3: aR ¼ 1.1): - � - � -, modal solution (frequency-averaged); (—) EFA plane

wave solution; (- - - -) SEA prediction; and (			) hybrid-EFEM0 prediction.
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solution by itself is an improvement over SEA but does not appreciably expand the range of applicability of
energy-based approaches for the point driven, damped plates. The combination of the EFEM0 and a direct
field solution, as implemented here for the hybrid method, is useful for all cases including direct field dominant
cases.

6. Conclusion

The EFEM0 formulation is developed using wave propagation and averaging techniques and implemented
using the finite volume method. The formulation is a new approach and results in less degrees of freedom for a
model. The resulting formulation can be implemented with SEA software and extends SEA application to
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Fig. 15. Energy density predictions for square plate (Case 4: aR ¼ 7.0): (- � - � -) modal solution (frequency-averaged); (—) EFA plane

wave solution; (- - - -) SEA prediction; and (			) hybrid-EFEM0 prediction.
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moderately damped systems with strong coupling. Wang et al. [16] combined the EFEM0 technique with SEA
for sound package optimization of a trimmed van. Wang et al. [17] applied the EFEM0 in SEA model for
exterior acoustic modeling of a truck. Klos [18] also applied the EFEM0 technique for point-excited shells. For
lightly damped systems, both SEA and EFEM0 methods produce an acceptable model. For moderately
damped 2-D systems, the EFEM0 method produces an acceptable model when augmented using a direct field
component. One approach for implementation of the hybrid method using SEA software was illustrated and
produced excellent results for point driven plates. For heavily damped systems, the direct field is dominant.
While the hybrid EFEM0 is capable of modeling such problems, a solution using only direct field theory is
probably sufficient for most purposes.
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